- The Complete Research Material is averagely 52 pages long and it is in Ms Word Format, it has 1-5 Chapters.
- Major Attributes are Abstract, All Chapters, Figures, Appendix, References.
- Study Level: BTech, BSc, BEng, BA, HND, ND or NCE.
- Full Access Fee: ₦4,000
Get the complete project »

ABSTRACT
In this project entitled statistical analysis on education trust fund allocation to tertiary institutions in six geo-political zones of Nigeria, the average allocation to zones, method of distributions, extraction of principal components, classification of the components into factors and to test if there is any significant difference in the allocation among the zones was carried out using principal components analysis, factor analysis, normality test just to mention but a few. The average allocation to all the zones within the period under review was #14,605,429,76. The allocation to zones was normally distributed indicating unbiasedness in the allocations. University allocation is the principal factor component in the ETF allocation among the institutions revealing high contribution of university with 0.201 in the first component, followed by monotechnics, polytechnics and colleges of education. With little difference in the allocations among polytechnics, monotechnics and colleges of education, they were grouped into one factor and university in another factor. Based on the results obtained; no zone is more favored and their distribution is unbiased
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF STUDY
In Principal Components Analysis (PCA) and Factor Analysis (FA) one wishes to extract from a set of P variables a reduced set of M components or factors that accounts for most of the variance in a P variables in other words, we wish to reduce a set of P variables to a set of M underlying super ordinate dimensions.
These underlying factors are inferred from the correlations among the P variables. Each factor is estimated as a weighted sum of the P variables. The factor is thus;
F1 = W1X1 + Wi2X2 + W1pXp+ K.
One may also express each of the P variables as a linear combination of the M factors,
Xj = Aij F1 + A2j F2 + Amj Fm + k+ Uj
Where Uj is the variance that is unique to variable j, variance
that cannot be explained by any of the common factors. Principal component analysis is a variable reduction
procedure which provides guidelines regarding the necessary sample size and number of items per component. It also
1
shows how to determine the number of components to retain, interpret the rotated solution, create factor scores and summarize the results.
It is appropriate when you have obtained measures on a number of observed variables and wish to develop a smaller number of artificial variables called Principal Components that will account for most of the variance in the observed variables. The principal components may then be used as predictor variables in subsequent analysis.
Principal component is defined as a linear combination of optimally weighted observed variables. The “linear combination” here refers to the fact that scores on a component are created by adding together scores on the observed variables being analyzed and “optimally weighted” refers to the fact that the observed variables are weighted in such a way that the resulting components account for a maximal amount of variance in the data set.
Factor analysis is a mathematical tool which can be used to examine a wide range of data sets. It is the most familiar multivariate procedure used in the behavioral sciences; it includes both component analysis and common
2
factor analysis. In factor analysis, you need only the correlation or covariance matrix not the actual scores. The purpose of factor is to discover simple patterns in the patterns of relationship among the variables. In particular, it seeks to discover if the observed variable can be explained largely or entirely in terms of a much smaller number of variable called factors.
Onyeagu (2003) explained the difference between factor analysis and principal component analysis. Factor analysis is covariance (or correlation) oriented. In principal component analysis, all components are needed to produce an inter-correlation (covariance) exactly. In factor analysis, a few factors will reproduce the inter-correlations (covariance) exactly.
Wang (2007) differentiate the principal component analysis and factor analysis as in principal component analysis the major objective is to select a number of component that will express as much of the total variance in the data as possible.
However, the factors formed in the factor analysis are generated to identify the latent variables that are
3
contributing to the common variance in the data. A factor analysis attempts to exclude unique variance from the analysis; whereas a principal component analysis does not differentiate common and unique variance. PCA analyzes variance while FA analyses covariance.
The PCA and FA have some similarities such as their measurement scale is interval or ratio level, linear relationship between observed variables, normal distribution for each observed variables. Each pair of observed variables has a bivariate normal distribution and lastly PCA and FA are both variable reduction techniques. If communalities are large, close to 1.00, results could be similar.
1.2 SOME FACTS ABOUT NIGERIA EDUCATION
The literacy and educational characteristic of population aged 6 years and above were enumerated in 1991 population census. The literacy was 60% for males and 40% for females. The literacy level in the country appears to have improved over years, while the sex differential on literacy among persons in the age group 35-39 was almost twice as high for male (68.3%) and female (35.8%). In contrast, the
You either get what you want or your money back. T&C Apply

You can find more project topics easily, just search
-
SIMILAR STATISTICS FINAL YEAR PROJECT RESEARCH TOPICS
-
1. APPLICATION OF QUEUEING THEORY IN TACKLING THE PROBLEM OF PORT CONGESTION AT APAPA PORT, LAGOS, NIGERIA
» Abstract The Apapa port is part of the ports operated by the Nigerian Ports Authority which was established in 1955 to oversee the activities and oper...Continue Reading »Item Type & Format: Project Material - Ms Word | 68 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
2. THE IMPACT OF INFORMATION AND COMMUNICATION TECHNOLOGY ON THE TEACHING AND LEARNING OF STATISTICS IN TERTIARY INSTITUTIONS
» ABSTRACT This study was intended to evaluate the impact of electrical power outage on the performance of small businesses in Kano state. This study wa...Continue Reading »Item Type & Format: Project Material - Ms Word | 52 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
3. MODELING CARDIAC OUT–PATIENT FLOW IN NNAMDI AZIKIWE UNIVERSITY TEACHING HOSPITAL (NAUTH) NNEWI WITH MONTE CARLO SIMULATION: AN APPLICATION ON QUEUEI...
» ABSTRACT Cardiac outpatients are those with heart related diseases but are not on admission. In the present study, a stochastic approach was used for ...Continue Reading »Item Type & Format: Project Material - Ms Word | 70 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
4. REGRESSION ANAYLSIS ON NATIONAL INCOME FROM 1999-2015
» CHAPTER ONE INTRODUCTION Background of Study Nigeria is a middle income, mixed economy and emerging market, with expanding manufacturing, financial, s...Continue Reading »Item Type & Format: Project Material - Ms Word | 59 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
5. A STATISTICAL ANALYSIS OF ROAD ACCIDENTS IN NIGERIA (FEDERAL ROAD SAFETY CORPS ONITSHA, ANAMBRA STATE 2002-2015)
» CHAPTER ONE 1.1. INTRODUCTION Road transportation is by far the commonest means of transportation in Nigeria when compared to other means like air, ra...Continue Reading »Item Type & Format: Project Material - Ms Word | 65 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
6. ANALYSIS OF UNBALANCED FIXED-EFFECT NON- INTERACTIVE MODEL
» ABSTRACT This study examines the analysis of fixed effect non interactive unbalanced data by a method called Intra Factor Design. And to derive this d...Continue Reading »Item Type & Format: Project Material - Ms Word | 52 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
7. THE DETERMINATION OF THE RELATIONSHIP BETWEEN THE WEIGHT AND AGE OF MALE AND FEMALE STUDENTS IN DELTA STATE UNIVERSITY, ABRAKA
» ABSTRACT The relationship between weight and age of male and female students in Delta State University, Abraka was determined. This study also determi...Continue Reading »Item Type & Format: Project Material - Ms Word | 48 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
8. LOANS AND ADVANCES EVALUATION WITH DISCRIMINANT ANALYSIS: A CASE STUDY OF FIVE COMMERCIAL BANKS
» ABSTRACT The study examined critical factors that discriminate between Non performing loans and advances and performing ones in commercial Banks. Non ...Continue Reading »Item Type & Format: Project Material - Ms Word | 98 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
9. STATISTICAL ANALYSIS OF INFANT AND CHILD MORTALITY
» ABSTRACT Despite the global decline in under five mortality rate from 90 deaths per 1,000 live births in 1990 to 48 in 2012, Nigeria has failed to rec...Continue Reading »Item Type & Format: Project Material - Ms Word | 52 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT
-
10. COMPARATIVE STUDY ON LOGIT AND PROBIT MODELS IN THE PREDICTION OF BRONCHO-PULMONARY DYSPLASIA STATUS OF INFANTS
» ABSTRACT Broncho Pulmonary Dysplasia (BPD) is a form of chronic lung disease that develops in preterm neonates treated with oxygen and positive pressu...Continue Reading »Item Type & Format: Project Material - Ms Word | 52 pages |
Instant Download | Chapter 1-5 | STATISTICS DEPARTMENT